Measurement–Theoretic Justification of Connectives in Fuzzy Set Theory

نویسنده

  • Taner Bilgiç
چکیده

The problem of representing intersection and union in fuzzy set theory is considered. There are various proposals in the literature to model these concepts. The possibility of using continuous triangular norms and conorms (including min and max) are taken up in a measurement–theoretic setting. The conditions are laid out to arrive at cardinal scales on which addition and multiplication are meaningful and critically discussed. These conditions must either be accepted on normative grounds or must be empirically verified before the modeling process in order to see which operations are meaningful. It is emphasized that the Archimedean axiom and the existence of natural bounds are crucial in arriving at ratio and absolute scale representations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE FUZZY SET THEORY AND AGGREGATION FUNCTIONS: HISTORY AND SOME RECENT ADVANCES

Several fuzzy connectives, including those proposed by Lotfi Zadeh, can be seen as linear extensions of the Boolean connectives from the scale ${0,1}$ into the scale $[0,1]$. We discuss these extensions, in particular, we focus on the dualities arising from the Boolean dualities. These dualities allow to transfer the results from some particular class of extended Boolean functions, e.g., from c...

متن کامل

SOME SIMILARITY MEASURES FOR PICTURE FUZZY SETS AND THEIR APPLICATIONS

In this work, we shall present some novel process to measure the similarity between picture fuzzy sets. Firstly, we adopt the concept of intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets and picture fuzzy sets. Secondly, we develop some similarity measures between picture fuzzy sets, such as, cosine similarity measure, weighted cosine similarity measure, set-theoretic similar...

متن کامل

Truth Values and Connectives in Some Non-Classical Logics

The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...

متن کامل

The Archimedean Assumption in Fuzzy Set Theory

The Archimedean axiom in fuzzy set theory is critically discussed. The axiom is brought into perspective within a measurement theoretic framework and then its validity for fuzzy set theory is questioned. The discussion sheds light into what type of vagueness fuzzy set theory models.

متن کامل

Measurement-Theoretic Frameworks for Fuzzy Set Theory

Two different but related measurement problems are considered within the fuzzy set theory. The first problem is the membership measurement and the second is property ranking. These two measurement problems are combined and two axiomatizations of fuzzy set theory are obtained. In the first one, the indifference is transitive but in the second one this drawback is removed by utilizing interval or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995